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This final technical report consists of a list and summary of the reports written under

this contract together with a preprint of a paper which will be submitted for open

publication.

Scientific Report #1: SEISMIC MONITORING OF A THRESHOLD TEST BAND

TREATY (TTBT) FOLLOWING CALIBRATION OF THE TEST SITE WITH

CORRTEX EXPERIMENTS by R. W. Alewine, III, H. D. Grey, G. D. McCartor

and G. L. Wilson, Report AFGL-TR-88-0055.

The problem of monitoring a TTBT using seismic data following calibration of the

test site with CORRTEX experiments is studied. Results are presented for the case of

one or two CORRTEX experiments and also for the more general case of several such

experiments. A number of possible monitoring procedures are studied and compared.

The difference in the procedure is the amount of information available, prior to the

CORRTEX experiments, on the quantity USEI, the standard deviation of measure-

ments of the log of the yield as measured by seismic techniques. Procedures studied

involve assumptions of knowledge of USEI which include the assumption that USE I is

known; a bound on USEI is known; an estimate of USEI sufficiently accurate for specified

uses is known; and UsE, is unknown.

Scientific Report #2: FURTHER STATISTICAL STUDIES OF THE YIELDS (U) by

G. D. McCartor, R. Blandford and R. W. Alewine, III, Report AFGL-TR-88-014(S).

In this report we present further work on the procedure of combining mb, Lg and :Mo

measurements of underground tests at the Shagan River test site and of the ",r, plica-

tions of the combined estimates of the yields for monitoring treaties rega:ding tests

at that site. We argue that the analysis presented in previous work, supplemented

by some further analysis presented in the present document, provid,,s strong support

for the following conclusions: (1) The Shagan River test site s",ould be broken into

geographically distinct regions with a relative bias between the regions used for yield
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estimation; (2) The relative bias between the regions labeled North and West is ap-

proximately 0.11 log-yield units; the relative bias between the regions labeled West

and Central is approximately 0.075 log-yield units; and (3) When the unified seismic

method is used and the suggested geographical corrections are made, the resulting

precision of the measurements for yields near that of the largest source in the data

is quite high, corresponding to an F-number of about 1.21 or less, while the high

precision may obtain at smaller yields there is not good evidence for this conclusion

in the current data and the precision at smaller yields may degrade to an F-number

of about 1.3.

Scientific Report #3: NONLINEAR ATTENUATION MECHANISM IN SALT AT

MODERATE STRAIN BASED ON SALMON DATA by G. D. McCartor and W. R.

Wortman, Report AFGL-TR-89-0013.

In order to describe the seismic pulse or source function from UGTs outside the

region of nonlinear attenuation, data from the Salmon even (5.3 kT in salt) have

been examined to serve as the basis for a description of a mild nonlinear attenuation

mechanism. It is found that a precursor in the Salmon pulses can be attributed to

a partial shear failure of the medium which operates above a compressional strain

threshold of about 10 - . When this loss mechanism is included along with a linear Q

of about 10, the Salmon pulses in the moderate stain regime are nearly reproduced

in both amplitude and shape. Using this result the pulse can be propagated out to

a range for which no further shear failure occurs and it can serve as a linear source

function.

The article entitled ANALYSIS OF SALMON NEAR-FIELD DATA FOR NONLIN-

EAR ATTENUATION by G. D. McCartor and W. R. Wortman follows.
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ANALYSIS OF SALMON NEAR-FIELD DATA

FOR NONLINEAR ATTENUATION

G. D. McCartor and W. R. Wortman

Mission Research Corporation

Santa Barbara, California

Abstract

In order to assess the existence and impact of mild nonlinear contributions to the

attenuation of seismic signals from underground explosions, free-field motion data

from underground 5.3 kT nuclear test Salmon have been examined. These data, which

where taken at ranges from 166 to 660 meters, show moderate strains (10 - 3 to 10- 4 )

which may provide nonlinear attenuation. The attenuation over an order of magnitude

in peak amplitude can be described approximately by an attenuation function Q of a

bit less than 10; however, the resulting waveform is noticeably wider than the data.

A linear but frequency dependent Q which decreases with decreasing frequency gives

a reasonable fit to much of the waveform change as well as the peak amplitude decay

with range. The higher speed precursor which precedes the main pulse in the data

cannot be described by this linear Q. With a spherical finite difference calculation

driven by the 166 meter Salmon pulse, it is found that a rapid shear modulus decrease

at a 10- 4 strain threshold can reproduce the observed precursor and other features

of the pulses at greater ranges when a linear absorption band Q;s10 is also added.

The attenuation of the Salmon pulse is thus partly attributable to a nonlinear effect

of material failure as well as a conventional linear mechanism.

INTRODUCTION

Near-field pulses from underground explosions certainly exhibit nonlinear

behavior, at least out to a radius for which gross structural changes in the rock ap-

pears. Beyond this radius (roughly 100 meters/kiloton1' 3 ) for strains less than 10- 3 ,

but before linear level strains of 10-6 are reached, there may be subtler nonlinear
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khaiiges Lhat influence propagation. For the purposes of establishing a seismic source

function IMueller and Murphy, 1971. Von Seggern and Blandford, 1972, Masse, 19811,

it is common to determine a range beyond which the pulse is taken as linear, as

indicated by experimental data indicating a nearly constant reduced displacement po-

tential. Typically this "elastic radius" is taken at a few hundred meters/kt 1/3. In

relating teleseismic observations and implied source characteristics it is assumed that

the signal propagates linearly with some attenuation imposed in the form of a Q

function. However, if there is significant contribution from nonlinear behavior, the

resulting teleseismic waveforms may be in error. Here we examine the Salmon near-

field data where the strains are in transition from highly nonlinear crushing to a linear

regime that can be described by Q in order to identify any clear evidence of nonlinear

behavior and to provide a description of the mechanism that produces it.

PREVIOUS WORK

Of the large body of information available for the propagation of seismic

signals in the intermediate strain regime, corresponding to strains varying from about

10- 3 to about 10-6, the data for salt appear to be the most nearly complete [McCar-

tor and Wortman, 1985J. Data from the Salmon nuclear explosion [Perret, 1967 and

Rogers, 19661, the Cowboy series of chemical explosions [Murphey, 1961 and Minster

and Day, 19861 and Larson's [19821 data on laboratory chemical explosions provide

propagation data in the relevant strain regime for a wide range of yields (approx-

imately ten orders of magnitude), distances and characteristic frequencies [Trulio,

1976]; the range of scaled distances (distance/yield / ) is a factor of about 300 while

the range of characteristic frequencies is nearly four orders of magnitude. The propa-

gation of pulses from explosions approximately satisfies cube-root scaling: if distances

and times are scaled by the cube root of the yield, the waveforms and amplitudes from

all events are nearly the same even though at least some portion of the data is pre-

sumably in the nonlinear regime. Furthermore, the propagation provides a waveform

which changes only slowly with distance.
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Salt is a relatively uniform medium for which there are a variety of experi-

ments ranging from Salmon, through the Cowboy series to small laboratory explosions

as reported by Larson. The experiments of Larson for small chemical explosions in

pressed salt have provided pulses over a scaled range from 10 m/kt'/ 3 to 200 m/kt 1 3.

The dominant range of frequencies covered was from about 104 to 105 Hz and the

ratio of peak particle velocities to compressional sound speed (which is comparable

with the strain) went from about 10- 1 to less than 10-3; by most standards this would

suggest that the response was nonlinear. Yet, by performing a direct superposition

experiment with a pair of simultaneous explosions, it was found that the resulting

response was consistent with direct addition of the two pulses as would be expected

from a linear medium. Still it is not clear just how nonlinear effects would be manifest

in this experiment without knowing the character of any nonlinear behavior. That is,

the apparent success of superposition for pulses with large strains may not directly

negate the possibility of any sort of nonlinear behavior IS. M. Day, private communi-

cation, 1989]. The Cowboy series of chemical explosions had a range of yields from

10 to 2000 pounds of TNT, some of which were carried out in cavities for decoupling

tests. The scaled ranges for the coupled experiments were from 200 to 3000 m/kt 1/3

and the corresponding peak strains were from a few times 10 - 4 to about 10- 5. The

dominant frequencies were 10 to 102 Hertz. The Salmon event took place in a natural

salt dome; a comprehensive set of measurements were taken, both at surface and sub-

surface locations. Subsurface measurements included scaled ranges from 100 m/kt 1/3

to about 425 m/kt'/ 3 , which provided peak strains from about 4 x 10- 3 to about 3

x 10 - with dominant frequencies from 1 to over 10 Hertz. The Salmon data show

remarkable internal consistency and correspond well with the other salt data.

Peak velocity data from the salt shots are shown as a function of scaled

range in Figure 1. The scaled data from a huge range of yields tend to fall nearly on

a straight line indicating a power law behavior with an exponent of about -1.9. This

contrasts with a value of -1 which would be expected for pure elastic behavior. Simple

scaling with yield appears to hold over this great range of strains. Note again that

the range of yields over which simple scaling holds includes strains which are expected
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to give nonlinear behavior. However, deviation from r- ' behavior is not necessarily a

nonlinear effect. In particular, linear but inelastic (i.e., anelastic) behavior can provide

such results.

Trulio [19761 has noted that the Salmon data for decay of peak velocity

with range are consistent with an effective Q of about 5. The effective Q for this

process tends to increase with increasing frequency and increase with decreasing strain.

Note that simple scaling, in conjunction with linearity, indicates that Q must be

independent of frequency as well as amplitude. To some degree, dependence on both

variables is subject to experimental examination. Gupta and McLaughlin [1989] have

analyzed some Salmon and Sterling data and concluded that the effective Q at Salmon

strains appears to be strain and frequency-dependent. Q is 5 to 10 and appears to

increase mildly with increasing range. Q is also larger at higher frequencies above the

corner. Sterling data, which are at lower strains, are less cohesive but they suggest a

significantly larger Q consistent with a transition to a linear low attenuation at small

strains. Langston 11983] indicates that Sterling S-waves, generated by asymmetries in

the existing Salmon cavity, show a Qa of about 35 suggesting a P-wave Q of about

70. Denny [1989] says that the source spectra characteristics of Salmon and Sterling

indicate that the Salmon pulses are nonlinear to beyond 700 meters.

Minster and Day [1986] have used the scaled peak velocity data for Cowboy

to determine if these data require an amplitude (nonlinear) or frequency-dependent

Q for consistency. It is determined that a Q-' which consists of a small constant plus

a term proportional to the peak strain provides a good fit to the data when applied

in a piecewise linear fashion. The observed attenuation effects do not firmly indicate

the need for a frequency-dependent Q, but indicate that an amplitude dependent Q

provides a much more convincing fit than a constant Q. It is concluded that there

must be nonlinear attenuation in the Cowboy strain regime.

The work of Larson [1982] on laboratory explosions in pressed salt indicates

that superposition appears to hold at a strain level of about 10- 3. However, data from

three sensors at increasing ranges provide increasing values of Q from 12 to 25 with
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increasing range for ranges of 30 to 70 m/kti 3. A constant Q cannot describe the

results.

New England Research laboratory ultrasonic pulse propagation experiments

[Coyner, 1988) have strains from less than 10-6 to more than 10- . In these exper-

iments comprassional and shear ultrasonic pulses consisting of about two cycles at

100-200 kHz were propagated through samples. Attenuations were calculated using

a spectral ratio technique. Variation of the attenuation with peak strain amplitude

and confining pressure were determined. For dome salt it was found that over a strain

range of 5x10 - 7 to 3x10 -5 and for a c ing load range of 0.1 to 1 MPa, the P-wave

attenuation is nearly constant and can be described by a Q of about 20. There is

no particular evidence of nonlinearity in Lhcse data alone although the attenuation

is large. It should be noted that these confining pressures are small compared with

those for underground sources.

There exist laboratory data on the absorption of the energy in small os-

cillations of halite rods taken by Tittmann [1985]. These experiments on decay of

cyclic motion induced in salt samples indicate that for strains below 10 - 6, and confin-

ing pressures consistent with that for underground explosions, a value of Q of several

hundred is appropriate. For larger strains the value of Q decreases indicating a nonlin-

ear attenuation although the nonuniform nature of the deformations in the experiment

makes it difficult to extract Q as a function of strain.

These salt data generally indicate that for strains in excess of 10- 5 there is

an attenuation which is probably nonlinear, increases with increasing strain and can

be described by an effective Q of the order of 10 for the dominant frequencies in the

pulses. No detailed knowledge of the attenuation mechanism currently exists but there

does appear to be a consistency in that the explosively generated pulses closely obey

simple scaling. This suggests that the mechanism must be rate independent. Data

for strains near 106 are not so consistent but they come from limited and diverse

experiments. Generally, attenuation decreases to a modest level for strains less than

106 and then is presumably linear.
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SALMON DATA AND NONLINEAR BEHAVIOR

We shall now consider the extent to which Salmon data can shed light on the

issue of linear versus nonlinear behavior beyond the "elastic radius" by exploring the

consequences of the assumption of linear behavior. This will be done by examination

of a series of velocity records from subsurface sensors to see if they are consistent with

strictly linear behavior. We shall attempt to determine if the records exhibit features

that cannot be understood in terms of linear attenuation which is possibly a function

of frequency. If the data are consistent with attenuation which is independent of

amplitude, but is possibly a function of frequency, they may allow the possibility that

the propagation mechanism is linear without ruling out a nonlinear effect. However,

even then it can serve to rule out a wide range of possible nonlinear mechanisms.

SA:.MON DATA

Data records for Salmon were taken by either velocity and acceleration

gauges, oriented either horizontally or vertically IPerret, 19673. The horizontal gauges

were either aligned radially from the source or transverse to this direction (to check

for asymmetries). The raw acceleration data allow determination of velocity by inte-

gration. Two problems arise. First, the resulting velocity generally not only does not

go to a constant, but it increases at a constant rate; this is a result of a post-shot non-

zero baseline for the acceleration instruments. It must be corrected for by altering the

acceleration baseline at late-times. There is a problem beyond this because even when

the late-time acceleration is taken as zero, the late-time velocity, while now forced to

be constant, is generally not zero. This may be a result Jf clipping of the acceleration

peak due to inadequate insLument response or to inadequate bandwidth in recording.

It is impossible to correct the difficulties in a unique manner. However, it appears to

be possible to do so in such a way that the effect on conclusions drawn from the result

will not be important. We have chosen to correct the data as follows: first, the raw

velocity records (or once integrated acceleration records) were fit at late time with a

straight line from a late time (1.6 sec) back to the time of the initial positive peak in

such a way as to give a behavior past the peak which was consistent with the results
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shown by Perret, who had access to complete instrument performance data as well

as substantial insight into experimental details; the resulting linear trend was then

removed; the velocity points before the peak were then altered by multiplication of

each data value by the ratio of the new peak value to the old peak value. This assures

that the velocity will be continuous and that the leading edge retains its original char-

acter although with a mild discontinuity in the first derivative exactly at the peak. It

is impossible to detect this discontinuity by merely looking at the resulting plotted

velocities. The effects of this correction will be seen primarily in the high frequency

end of the spectra and this will not be the region of interest. In addition to altering

the raw data records for obvious instrumentation problems, we have at the same time

introduced a geometrical factor which provides an estimate of the spherical radial

velocity from each record. Since all six of the records chosen for use are of horizontal

radial motion, the corresponding spherical motion can be estimated by assuming the

observed results are just the component of spherical radial motion.

The six records selected for study include those at ranges from 166 to 660

meters. The records were selected so as to have as large a set of ranges as possible while

also having them be as internally consistent as possible. Consistency was established

by taking records whose peak velocities fell along a smooth curve when plotted against

range. While there is no real reason to believe that any one of the records is more

desirable than some which were rejected, our use of spectral ratio methods requires

avoiding examples which will obviously lead to unreasonable results when records are

used in pairs. The records selected are indicated in Table 1 along with some of their

properties.

The available data records extend out to about five seconds past the ex-

plosion and consist of values every 0.2 milliseconds. It was found that after about

1.5 seconds the records showed no further significant contribution, so we truncated

the data at 1.6 seconds giving a convenient 8192 data points for each record. The

corrected velocity records, all but one of which were taken from acceleration data, are

shown on Figure 2. When plotted on the same scale it becomes difficult to appreciate
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fully the features of the more distant examples, so the same data are plotted again in

Figure 3, normalized to unit peak amplitude.

PRECURSOR

The Salmon data have a feature which may be useful in understanding some

nonlinear effects of attenuation. Each of the pulses experimentally observed at six

sensors at ranges from 166 meters to 660 meters exhibits a discontinuity in the slope

upon the initial steep rise in pulse velocity, as seen in Figure 3. This appears as a

toe-like behavior in the leading edge of the velocity profile which has been described

by Perret as an "elastic precursor" to the main pulse. The absolute amplitude of the

toe remains approximately constant with range, at a particle velocity of about 0.5

m/s, while its amplitude relative to the peak increases with range. This precursor

amplitude corresponds to a compressional strain level of E ;: 10-. The leading edge

of the pulses (i.e., that disturbance earliest in time) propagates at a speed of about

4.7 km/sec while the pulse peaks, always after the toe, propagate at a speed of about

3.7 km/sec. The elastic compressional speed of mild disturbances in this salt medium

found from independent measurements were typically about 4.6 km/sec. This indicates

that the precursor signal seen in the Salmon data is due to elastic behavior while the

subsequent pulse suffers a lower propagation speed due to some relaxation or plastic

behavior.

Perret suggests that an elastic-plastic material behavior might account for

the data in perhaps one of two ways. First, the precursor could develop at large

strain, where an elastic limit is exceeded from radii much smaller than instrumented

for Salmon, and continue to propagate in front of a following plastic wave. Second,

it may be that the precursor develops in the moderate strain region if dome salt has

an elasto-plastic nature at such strains. In either case, the modulus of salt must be a

function of the strain - that is, the medium is nonlinear.

If the precursor develops at large strain there must be an elastic limit beyond

which plastic behavior provides a lower modulus. When such a medium is dynamically
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loaded beyond the elastic limit, a leading pulse at the elastic limiting stress is generated

followed by a larger amplitude but slower plastic wave. If the elastic-plastic transition

is not sharply defined, the resulting pulse could consist of a gently rising leading

elastic front which smoothly merges with the main plastic pulse much as seen in the

Salmon data. Perret points out that if some energy from the plastic component is

fed to the elastic portion during propagation, the amplitude of the elastic piece could

remain nearly constant, but this is quite speculative. What is known is that a variety

of laboratory experiments show that strong impulsive sources can produce elastic

precursors in a variety of media. For example, work of Ahrens and Duvall 119661 with

planar pulses in quartz generated by explosives exhibit an apparent elastic stress limit

of about 70 kbar corresponding to strains of about 10-1. This produces a leading

edge, described as the elastic shock, which propagates at a speed in excess of that of

the deformational portion of the pulse which follows. The elastic shock propagates

with an equivalent modulus which is greater than the static modulus at this high

stress. It is speculated that the elastic wave is supported by a higher than equilibrium

shear stress. After the elastic component has passed, the shear stress is apparently

reduced to the static value by a plastic or fracture process. This experiment, as well as

that by Taylor and Rice [19631 which also shows an elastic precursor, provides elastic

limits of many or tens of kilobars in contrast with the Salmon data since they gives

a precursor amplitude of about 5 bars. Consequently this mechanism does not seem

a likely means of accounting for the Salmon data since they give a nearly constant

and small precursor amplitude which seems to begin near the 166 meter sensor range

rather than be well developed by this time.

The second possibility indicated by Perret is that of having the precursor

develop locally in the observation region based on moderate strain plastic behavior.

While there is no accepted dynamical equation of state for dome salt, Perret points

out that dome salt is known to be highly plastic: under static conditions, it is nearly

hydrostatic. Thus plastic deformation of salt at moderate stresses is apparently nor-

mal. In order to account for the precursor data in Salmon, the equation of state would

have to provide linear behavior up to a threshold (a threshold of about 5 bars, much
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less than the 70 kbars found for the elastic shock discussed above) and, through some

deformation of the material, relax the modulus abruptly (on the Salmon time scale)

to a value which provides a compressional propagation speed about 20% less than for

infinitesimal strains in undisturbed material.

DATA ANALYSIS

The amplitudes of Figure 2 indicate that the pulse progresses smoothly to

large radii (with a decrease in amplitude which is approximately like radius to the -1.9

power). At the same time, Figure 3 indicates that the normalized pulse shape remains

fairly stable but it shows a mild tendency to smooth out the sharp peak and to increase

the width. These features suggest that the higher frequency components are being

more rapidly attenuated than the low as would be appropriate, for example, with a

constant Q, should such a description be suitable. Beyond this, there is the initial ramp

or precursor on each pulse which strengthens relative to the peak amplitude as the

radius increases. In order to establish the possible nonlinear character of the Salmon

data, we shall adopt the position of exploring the consequences of the assumption of

anelastic behavior as expressed in terms of a Q function which we will attempt to

evaluate. If this attempted description leads to contradictions, such as an effective Q

that depends upon amplitude, we shall attribute the effects to nonlinear behavior. We

shall use the data to make estimates of Q over a range of frequencies and amplitudes.

Since we are dealing with data exclusively from a single event, no assumptions about

the scaling behavior are necessary and no such information will be gained.

A strict interpretation of anelastic behavior would require that we find a Q

function, dependent generally upon frequency, as well as a phase velocity c which is

consistent with Q, so as to enforce the requirement of causality [Aki and Richards,

1980]. However, moderate values of Q are consistent with a nearly constant c, at

least over the range of frequencies which are available to experimental verification.

As indicated by Kjartannson [19801 and generalized to spherical geometry by McCar-

tor and Wortman [1985j, the propagation of a pulse in an anelastic medium with Q

independent of frequency can be given analytically. This leads to frequency domain
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representation of the change of the Fourier transform of the velocity in going from

radius 'a' to 'r' as

S(r - a) (r,w) icw 2 1Ica 2cQa a2(1

exp(W _1
2cQ (a, w) - I()

cr 2cQr r
2

where c is a mild function of frequency and Q given by Kjartannson. This relation

allows the testing of changes in velocity pulses to determine if they are consistent with

this constant Q. It can also be viewed as a means of estimating this Q from velocity

data pairs. If the 1/Q terms on the right hand side is dropped, as is suitable for Q

much larger than one, we arrive at the common operational definition of Q which can

be used to solve directly for it, given c. Here c will be taken as a constant at 3.7

km/sec, the speed of the main peak.

Estimates of Q have been carried out for all adjacent pairs of records along

with the extreme pair. In each case, the velocity spectra ratio has been corrected for

instrument response [Perret, 19671 using the frequency domain response function of

the sensors. These corrections are generally fairly small. Figure 4 shows the estimates

of Q obtained using Equation 1 with the Salmon velocity data records for the closest

pair at ranges of 166 and 225 meters; Figure 5 shows the corresponding Q for the

farthest pair at 402 and 660 meters; finally, Figure 6 gives Q for the extreme pair at

166 and 660 meters. The resulting effective Qs are remarkably similar for all pairs.

There appears to be no significant difference between the initial and final record pair

estimate for Q, especially at frequencies near tfie corner. (There does appear to

be a mild tendency for a larger attenuation at smaller ranges but given the scatter

of the data this cannot be firmly interpreted as evidence of nonlinearity. Gupta

and McLaughlin, using a different data set and a different analysis, suggest that the

effective Q does change significantly over this range although a flat Q is within the

limits of their uncertainty.) However, the results consistently indicate a dependence

on frequency. To determine better if a constant Q fit is adequate, the initial pulse

at 166 meters has been propagated using Kjartannson's model for Q = 10 with c =
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3.7 km/s at 1 Hiz. This value of Q gives a good fit to the changes in the pea!: pulse

amplitude. The scaled pulse shapes that result from this assumption are given in

Figure 7 and they can be compared directly with the data in Figure 3. Generally the

constant Q calculation gives pulses which are broader and less peaked than the data.

If a model for a frequency dependent Q is taken as

Q-1 1/20 + 1.5/f (2)

from an approximate fit to the data (this Q is linear in f until roughly 30Hz, when it

becomes constant), along with constant c, the propagation of the initial 166 meter data

by Fourier synthesis again gives a good fit to the peak amplitude decay. The resulting

pulse shapes, scaled to unit amplitude, are given in Figure 8. This approximation to

Q provides a better fit to the peak width and sharpness. Note that the precursor seen

on each of the original data records cannot be obtained by this simple linear model.

PRECURSOR ANALYSIS

The technique which we have used is that of taking the observed Salmon

initial velocity pulse at small range (166 meters) as a source and comparing the result-

ing pulses as they are propagated through material subject to candidate constitutive

relations. The results are compared with observed signals at larger ranges. For any

constitutive relation the effective Q associated with the attenuation may be deter-

mined, but it must be emphasized that nonlinear attenuation cannot be properly

described by a Q function. The fundamental comparison of the data with calculations

is not in terms of the Q but in terms of reproduction of waveform including both

amplitude and shape.

As an equation of state hypothesis which can be consistent with the Salmon

data, consider a medium for which the shear modulus permanently (or at least, does

not recover until the pulse is past) decreases upon having a critical strain threshold

exceeded; the compressional modulus before and after exceeding the strain threshold

reflects the compressional speeds at the beginning and peak of the Salmon pulses,
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respectively. This will be referred to as a shear failure model. Depending upon the

relation between the compressional and the shear moduli, complete shear failure may

occur, meaning that the elastic shear modulus, it, goes to zero. For the example used

in this discussion, the compressional speed decreases to 80% of its original value. We

have taken the Lam6 constants A and 4 to have a ratio of 2. Thus a decrease of

the compressional speed, ((A + 2,u)/p)1/ 2 , where p is the density, of 20% corresponds

to reducing j to about 38% of its elastic value when A is held fixed. Note that the

reduction of modulus at a fixed strain is consistent with scaling since the strain is

a unitless quantity and there is no rate dependence. The scaling restriction does

require that the relaxation time of the modulus change be short compared with any

representative time scale of the data; we take the transition to be instantaneous. In

order to determine the effect on the pulse propagation we use the observed Salmon

velocity at 166 meters as the source. These calculations were carried out using a

standard finite difference method as illustrated by Wilkins[1964).

As an initial effort, the elastic threshold was taken at a compressional strain

of 10-4; the resulting pulse sequence at the ranges to observation stations for Salmon

is as shown in Figure 9. Note that the character of the calculated precursor is much

like that seen experimentally, in Figure 2, in that the leading feature is drawn out, the

transition to the main pulse takes place at a constant amplitude and the peak now

moves at a significantly lower speed. Still the amplitude of the main peak does not

decrease as quickly as the data indicate.

When the modulus decreases, the elastic energy in the pulse also decreases

in a manner approximately proportional to the square of the compressional wave

speed. Since the modulus reduction is permanent, this energy is lost to the pulse and

goes into heating the medium. For the parameter used, over a full cycle for which

most of the pulse exceeds the critical strain, approximately one-third of the original

elastic energy will be lost. This corresponds to an effective Q of about 13 for peak

strains well in excess of 10' (for small strains less than this threshold, there will

be no loss). This value of Q is far less than that expected for very small strains

but it is still more than the 5 to 10 seen for Salmon attenuation. The addition of a
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moderate level of linear attenuation consistent with that seen for small to moderate

strains in other experiments will improve the agreement (for example, the NER data

suggest Q;20). More importantly, the use of a partial shear failure mechanism will

automatically terminate once the pulse weakens so that the peak strain falls below

the critical strain threshold value. This will produce a sharply changing effective Q

in a manner suggested by the Cowboy data.

The attenuation from partial shear failure alone does not produce an am-

plitude for the pulse at 660 meters which is as small as that seen experimentally.

More attenuation can be added to attempt to match better the data by employing a

linear Q of sufficient value. A method of inclusion of a linear absorption band Q in

time stepping finite difference methods has been demonstrated by Day and Minster

[1984] through use of Pad6 approximants. Our application of this method is outlined

in the Appendix. This formalism was employed using a target Q of 10 with a range

of half amplitude frequencies of 1 to 100 Hertz (Q rises above 20 beyond these val-

ues). The sequence of pulses that results using both the partial shear failure and

a linear Q of 10, starting with the Salmon pulse at 166 meters, is shown in Figure

10. The amplitudes for the main peaks now are in substantial agreement with the

data and the length and amplitude of the precursor are also reproduced fairly well.

There remains a very abrupt transition from precursor to main pulse which is clearly

sharper than the experimental data. In order to avoid the abrupt transition between

precursor and pulse a range of the threshold for the shear failure has been added to

the model. This allows a variation of failure threshold values of compressional strain

over a range of ± 30% with a constant probability about the 10' value. Each cell in

the finite difference calculation is given its own threshold which is randomly chosen on

this basis. The set of pulses at the Salmon instrument ranges then calculated is given

in Figure 11. The result is a smoother transition from precursor to main pulse in a

manner which is quite similar to the actual Salmon data shown in Figure 2. While

it is possible to achieve a detailed fit to the data by further such refinements, this is

not a very meaningful thing to do since the mechanisms are not understood to the

required level of detail. The important point is that it is possible to reproduce the
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data to a substantial degree using only a few physically based parameters to describe

the thresholded partial shear failure. Rimer and Cherry [1982] have shown that it is

possible to reproduce the Salmon data, including the precursor, using a shear strength

limit which is variable. The yield strength is initially weak but then strengthens and

weakens again through quadratic work hardening. This phenomenological constitutive

relation will not provide scaling.

DISCUSSION

Free field ground motion data from Salmon at ranges of 166 to 660 meters

have been examined in order to determine if the associated attenuation of amplitude

and distortion of pulse shape imply operative nonlinear effects in this moderate strain

regime. This has been done by attempting to account for the data using only a

linear description such that a failure would clearly indicate the alternative, nonlinear

behavior. It is found that within the limits of accuracy of the experimental data,

and ignoring the precursor, it is possible to account for these Salmon data using a

strictly linear attenuation model with a frequency dependent Q which is the order of

ten. These limited data are consistent with linear behavior, but they do not explicitly

rule out nonlinear mechanisms. It seems certain that the attenuation at lesser strains

must decrease to meet the rather larger Q indicated by data from other experiments

at strains approaching 10-6.

The elastic precursor or leading toe seen in Salmon near-field, moderate

strain, velocity data is reproduced rather well with the hypothesis of partial shear

failure which is activated for the duration of the pulse when the compressional strain

exceeds 10- . This also gives an attenuation mechanism which accounts for much of

the energy loss seen in the decay of pulses from Salmon with range. However, the

overall attenuation produced is not quite adequate to account for that seen in the

data. The addition of a linear absorption band attenuation, which is active over much

of the significant frequency range appropriate to Salmon and which has a Q of 10, then

provides a propagation model which nearly reproduces the signals at ranges beyond

166 meters when the observed signal at this range is used as the source. Furthermore,
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this threshold mechanism provides a transition to more modest attenuation at small

strains which is required to be consistent with Cowboy data; when applied to different

yield events in salt, it will produce simple scaling as observed over a wide range of

explosive events. While there is no assurance that this mechanism applies in other

than the salt medium, Perret points out that elastic precursors of a similar character

have been seen in underground test pulses in both alluvium and dolomite. The fact

that the reduction in compressional wave speed is attributed to shear failure, rather

than alteration of some other material property, is largely a matter of consistency

with past thinking on modes of material behavior; there is no direct experimental link

to shear properties. The general agreement with data that results could just as well

have been produced by any method that reduces the compressional modulus in the

required amount.
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APPENDIX

Day and Minster [1984] have shown how to include an arbitrary linear Q

function in time stepping calculations. For an absorption band an analytic solution

is available. An outline of their methods, as generalized to the spherical case is given

here.

For a single Aormalized relaxation function, m(t), the stresses and strains

are related by

r = (A + 2,4) f m(t - r) c, ()dr + 2A f m(t - (A-i)

r,9 = (2A + 2z) f m(t - r)e2(r)dr + Af m(t - T)E 1(T)dr (A -2)

Here the strains are

09 = (A -3)
= ar

u - (A - 4)
r

where u is displacement. Generally one could have two different relaxation functions

(e.g., bulk and shear) but we shall not consider this possibility. The A and A are the

usual Lame constants which are now the unrelaxed or high-frequency moduli of the

medium. The stresses can be written in terms of Q corrected strains, e, as

r, = (A + 21i)ej + 2Ae 2  (A - 5)
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Ee = ( + 24)e 2 + (A -- 6)

Day and Minster have shown how to express the ei in terms of the E,

ei = f m(t - r)fidr (A - 7)

using a sequence of m Pad6 approximants to write the integral equation as a differential

relation. For an absorption band attenuation with relaxation times between r, and r2

and with a flat spectrum, they show that the integral relation can be replaced by

m
el(t) =El(t) - E_ 'i k (t) (A - 8)

k=I

where

dk + (rk-k - T 2 1 WkQ0 1 Ej(t) k 1,...,m (A - 9)
dt 7r

Here Q0 is the target Q in the absorption band, the

Vk [ k (r -1 -') + (rI + rq')] (A - 10)

where the tk are the abscissas and Wk are the weights for m-point Gauss-Legendre

quadrature. The index m is that of the Pad6 approximant. As m increases, the

solution converges to the analytic result which in the frequency-domain is

2 ir +w'r / 2i (w(r2-1)

iwffi(w) = r(w) = 1- 1 -- fn 1+w 2 r 2  + i tan -1  . r)) (A-i1)
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Table 1. Salmon records used including range, ratio of spherical to

cylindrical radius and peak velocity.

Record Range VR/V. VRa k (m/s)

E-14C-27-AR 166 1.0 13.8

E-14C-22-UR 225 1.36 8.0

E-14 -20-AR 276 1.61 5.1

E- 6 -27-AR 318 1.0 3.75

E-14C-39-AR 402 2.4 2.5

E-11 -34-AR 660 1.06 1.1
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FIGURE CAPTIONS

Figure

1. Peak particle velocities from explosions in salt, from Larson [1982].

2. Corrected Salmon velocity records at 166, 225, 276, 402 and 660 meters.

3. Salmon velocity records normalized to unit peak amplitude.

4. Estimate of Q(f) between ranges of 166 and 225 meters.

5. Estimate of Q(f) between ranges of 402 and 660 meters.

6. Estimate of Q(f) between the extreme record pair of 166 and 660 meters.

7. Scaled pulse shapes for a frequency independent Q of 10.

8. Scaled pulse shapes for a specific frequency dependent Q(f).

9. Pulses at Salmon ranges for finite difference calculation of partial shear

failure at compressional strain threshold of 10'.

10. Pulses at Salmon ranges for finite difference calculation of partial shear

failure at compressional strain threshold of 10 - and a linear Q of 10.

11. Pulses at Salmon ranges for finite difference calculation of distributed

partial shear failure and a linear Q of 10.
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Figure 1. Peak particle velocities from explosions in salt, from

Larson [1982].
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Figure 3. Salmon velocity records normalized to unit peak amplitude.
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